Parece ser que en el segmento ALICE (A Large Ion Collider Experiment), del LHC, se han sacado y estudiado datos que apuntan a que en el universo existe una simetría fundamental en la naturaleza.
Si bien sabemos que una gran parte de la naturaleza es simétrica per se, no sabíamos hasta ahora si esto era algo común al resto de características de nuestro universo. Al fin y al cabo casi nada es perfectamente simétrico, ¿no? Bueno, la mayor duda era si esta simetría se podía observar en los núcleos de los átomos de materia y antimateria de igual forma, por ejemplo, en la aglomeración de protones y neutrones en el núcleo de un átomo, y de sus análogos en antimateria, al átomo de antimateria. Y resulta ser que sí, que se forman de manera prácticamente igual.
Parece ser que esto refuerza la teoría de que en el inicio del universo, se creó tanta materia como antimateria. Si bien esto deja todavía más latente la pregunta de "¿...y por qué ganó la materia?", por lo menos nos hace apuntar en la dirección correcta.
Por ahora, todavía queda mucho para desentrañar el misterio de por qué todo lo tangible es materia y no antimateria, y de qué sucesos poco después del Big Bang cambiaron las bazas a nuestro favor. Pero este sin duda es un buen avance para ir allanando terreno.[
Noticia completa (IFLScience)With the help of the Large Hadron Collider’s (LHC) heavy-ion detector ALICE (A Large Ion Collider Experiment), physicists have confirmed there is a fundamental symmetry in nature. By making precise measurements of particle mass and electric charge, researchers from the University of São Paulo (USP) and the University of Campinas (UNICAMP) confirmed the symmetry between the nuclei of particles and antiparticles in terms of charge, parity, and time (CPT). The results were published in Nature Physics on August 17 and will help scientists better understand the laws of our Universe.
The team used ALICE – an instrument known for its high-precision tracking and identification capabilities – to take measurements of particles produced from high-energy heavy-ion collisions. The purpose of their experiment was to look for subtle differences in the ways protons and neutrons join in the nuclei and then compare that to how antiparticles join in the antinuclei. The researchers are also hoping ALICE will help them better understand how heavy quarks – such as the charm and beauty quarks – are produced.
"After the Big Bang, for every particle of matter an antiparticle was created. In particle physics, a very important question is whether all the laws of physics display a specific kind of symmetry known as CPT, and these measurements suggest that there is indeed a fundamental symmetry between nuclei and antinuclei," said Marcelo Gameiro Munhoz, a professor at USP's Physics Institute (IF) and a member of the Brazilian team working on ALICE.
In their experiment, the researchers measured differences in the mass-over-charge ratio for deuterons and antideuterons along with helium-3 and antihelium-3. Researchers took that data and combined it with recent high-resolution measurements comparing proton and antiproton properties. As we know, the LHC is a massive particle accelerator and ALICE is a specialized instrument that looks for heavy-ion (lead) collisions. When lead ions collide, they produce a massive amount of particles and antiparticles. Data shows these particles combine to form nuclei as well as antinuclei at almost the same rate, allowing for a detailed comparison.
The team measured both the curvature of particle tracks within the detector’s magnetic field and the particles’ flight time in order to calculate the mass-to-charge ratios. After measuring both the curvature of particle tracks in the detector's magnetic field and the particles' time of flight, that information was then used to determine the mass-to-charge ratios for nuclei and antinuclei.
There are many theories regarding the fundamental laws of the universe and the measurements of mass and charge conducted in this experiment are an integral part that will help physicists determine which theory reigns supreme. Scientists are hopeful that by understanding these results, they will better grasp the relationship between matter and anti-matter.
"These laws describe the nature of all matter interactions," Munhoz explained in a statement, "so it's important to know that physical interactions aren't changed by particle charge reversal, parity transformation, reflections of spatial coordinates and time inversion. The key question is whether the laws of physics remain the same under such conditions.
Fuente: IFLScience
A ver si mTh puede resolvernos un poco las dudas al respecto, o corregirme si he escrito algo mal xD.